Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396643

RESUMO

Paracetamol, or acetaminophen (N-acetyl-para-aminophenol, APAP), is an analgesic and antipyretic drug that is commonly used worldwide, implicated in numerous intoxications due to overdose, and causes serious liver damage. APAP can cross the blood-brain barrier and affects brain function in numerous ways, including pain signals, temperature regulation, neuroimmune response, and emotional behavior; however, its effect on adult neurogenesis has not been thoroughly investigated. We analyze, in a mouse model of hepatotoxicity, the effect of APAP overdose (750 mg/kg/day) for 3 and 4 consecutive days and after the cessation of APAP administration for 6 and 15 days on cell proliferation and survival in two relevant neurogenic zones: the subgranular zone of the dentate gyrus and the hypothalamus. The involvement of liver damage (plasma transaminases), neuronal activity (c-Fos), and astroglia (glial fibrillar acidic protein, GFAP) were also evaluated. Our results indicated that repeated APAP overdoses are associated with the inhibition of adult neurogenesis in the context of elevated liver transaminase levels, neuronal hyperactivity, and astrogliosis. These effects were partially reversed after the cessation of APAP administration for 6 and 15 days. In conclusion, these results suggest that APAP overdose impairs adult neurogenesis in the hippocampus and hypothalamus, a fact that may contribute to the effects of APAP on brain function.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Overdose de Drogas , Camundongos , Masculino , Animais , Acetaminofen/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Transaminases/metabolismo , Neurogênese , Fígado/metabolismo , Camundongos Endogâmicos C57BL
2.
Behav Brain Res ; 459: 114806, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38086456

RESUMO

Sex differences in declarative memory are described in humans, revealing a female or a male advantage depending on the task. Specifically, spatial memory (i.e., spatial navigation) is typically most efficient in men. This sexual dimorphism has been replicated in male rats but not clearly in mice. In this study, sex differences in spatial memory were assessed in thirty-six C57BL/6 J mice (Janvier Labs; i.e., C57BL/6JRj mice), a widely used mouse substrain. Both male and female mice (12 weeks-old) were subjected to standard behavioral paradigms: the elevated plus maze, the open field test, the novel object and place tests, the forced swimming test, and the water maze test for spatial navigation. Across assessment, no sex differences were found in measures of locomotor activity, emotional and behavioral responses, and object and place recognition memories. In the water maze, male mice were faster in learning the platform location in the reference memory training and used more spatial strategies during the first training days. However, both sexes reached a similar asymptotic performance and performed similarly in the probe trial for long-term memory consolidation. No sex differences were found in the cued training, platform inversion sessions, or spatial working memory sessions. Hippocampal expression of the brain-derived neurotrophic factor was similar in both sexes, either in basal conditions or after performing the behavioral training battery. Importantly, female mice were not more variable than males in any measure analyzed. This outcome encourages the investigation of sex differences in animal models and the usefulness of including female mice in behavioral research.


Assuntos
Escala de Avaliação Comportamental , Memória Espacial , Humanos , Ratos , Camundongos , Feminino , Masculino , Animais , Camundongos Endogâmicos C57BL , Aprendizagem em Labirinto/fisiologia , Natação
3.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37958570

RESUMO

We have recently reported sex differences in the plasma concentrations of lysophosphatidic acid (LPA) and alterations in LPA species in patients with alcohol and cocaine use disorders. Preclinical evidence suggests a main role of lysophosphatidic acid (LPA) signaling in anxiogenic responses and drug addiction. To further explore the potential role of the LPA signaling system in sex differences and psychiatric comorbidity in cocaine use disorder (CUD), we conducted a cross-sectional study with 88 patients diagnosed with CUD in outpatient treatment and 60 healthy controls. Plasma concentrations of total LPA and LPA species (16:0, 18:0, 18:1, 18:2 and 20:4) were quantified and correlated with cortisol and tryptophan metabolites [tryptophan (TRP), serotonin (5-HT), kynurenine (KYN), quinolinic acid (QUIN) and kynurenic acid (KYNA)]. We found sexual dimorphism for the total LPA and most LPA species in the control and CUD groups. The total LPA and LPA species were not altered in CUD patients compared to the controls. There was a significant correlation between 18:2 LPA and age at CUD diagnosis (years) in the total sample, but total LPA, 16:0 LPA and 18:2 LPA correlated with age at onset of CUD in male patients. Women with CUD had more comorbid anxiety and eating disorders, whereas men had more cannabis use disorders. Total LPA, 18:0 LPA and 20:4 LPA were significantly decreased in CUD patients with anxiety disorders. Both 20:4 LPA and total LPA were significantly higher in women without anxiety disorders compared to men with and without anxiety disorders. Total LPA and 16:0 LPA were significantly decreased in CUD patients with childhood ADHD. Both 18:1 LPA and 20:4 LPA were significantly augmented in CUD patients with personality disorders. KYNA significantly correlated with total LPA, 16:0 LPA and 18:2 LPA species, while TRP correlated with the 18:1 LPA species. Our results demonstrate that LPA signaling is affected by sex and psychiatric comorbidity in CUD patients, playing an essential role in mediating their anxiety symptoms.


Assuntos
Cocaína , Transtornos Relacionados ao Uso de Substâncias , Humanos , Masculino , Feminino , Criança , Caracteres Sexuais , Triptofano , Estudos Transversais , Comorbidade
4.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569459

RESUMO

Genome-wide association studies (GWAS) constitute a powerful tool to identify the different biochemical pathways associated with disease. This knowledge can be used to prioritize drugs targeting these routes, paving the road to clinical application. Here, we describe DAGGER (Drug Repositioning by Analysis of GWAS and Gene Expression in R), a straightforward pipeline to find currently approved drugs with repurposing potential. As a proof of concept, we analyzed a meta-GWAS of 1.6 × 107 single-nucleotide polymorphisms performed on Alzheimer's disease (AD). Our pipeline uses the Genotype-Tissue Expression (GTEx) and Drug Gene Interaction (DGI) databases for a rational prioritization of 22 druggable targets. Next, we performed a two-stage in vivo functional assay. We used a C. elegans humanized model over-expressing the Aß1-42 peptide. We assayed the five top-scoring candidate drugs, finding midostaurin, a multitarget protein kinase inhibitor, to be a protective drug. Next, 3xTg AD transgenic mice were used for a final evaluation of midostaurin's effect. Behavioral testing after three weeks of 20 mg/kg intraperitoneal treatment revealed a significant improvement in behavior, including locomotion, anxiety-like behavior, and new-place recognition. Altogether, we consider that our pipeline might be a useful tool for drug repurposing in complex diseases.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Estudo de Associação Genômica Ampla , Caenorhabditis elegans/genética , Estaurosporina/uso terapêutico , Reposicionamento de Medicamentos
5.
Antioxidants (Basel) ; 12(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37507916

RESUMO

(1) Background: Cocoa's healthy benefits may be attributed to the potent antioxidant activity of cocoa polyphenols, mainly flavanols, which have been characterised as existing in a high concentration in cocoa. However, the phenolic composition of cocoa and cocoa-derived products is highly variable, and manufacturing processes might significantly reduce their phenolic content. For that reason, the full characterisation of cocoa and cocoa-derived products before evaluating their bioactivity is crucial. The aim of this review is to analyse the available evidence on the effect of flavanol-fortified cocoa-derived products on human health. (2) Methods: Forty-eight clinical trials focused on the health effect of consuming flavanol-fortified drinks, bars and chocolate have been reviewed, with a total of 1523 subjects. (3) Results: Although studies differ widely in methodology, dosage, duration, and target population, beneficial effects of flavanol-rich cocoa consumption have been observed at doses ranging from 45.3 mg/d to 1078 mg/d, especially on cardiovascular health and cognitive function. (4) Conclusions: Considering the high consumption and acceptability of cocoa and cocoa-derived products, the fortification of cocoa products as well as other highly consumed foods with cocoa flavanols could be an effective strategy for health promotion.

6.
Transl Psychiatry ; 13(1): 215, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344453

RESUMO

We have recently reported alterations in the plasma concentrations of lysophosphatidic acid (LPA) in patients with substance use disorders. In order to further explore the potential role of the LPA signaling system as biomarker in cocaine use disorders (CUD) we conducted a cross-sectional study with 105 patients diagnosed with CUD and 92 healthy controls. Participants were clinically evaluated and blood samples were collected to determine plasma concentrations of total LPA and LPA species (16:0-, 18:0-, 18:1-, 18:2-, and 20:4-LPA), and the gene expression of LPA1 and LPA2 receptors in peripheral blood mononuclear cells. We found that patients with CUD had significantly lower plasma concentration of the majority of LPA species, while the mRNA expression of LPA1 receptor was found to be higher than controls. Moreover, we found a positive association between plasma concentration of 20:4-LPA and relevant CUD-related variables: age of onset cocaine use and length of cocaine abstinence. The statistical analysis revealed sex differences in concentrations of total LPA and LPA species, and women showed higher LPA concentrations than men. Furthermore, studies in rats of both sexes showed that plasma concentrations of total LPA were also altered after acute and chronic cocaine administration, revealing a sexual dimorphism in these effects. This study found alterations on the LPA signaling system in both, patients with CUD and rats treated with cocaine. Our results demonstrate that LPA signaling is impacted by CUD and sex, which must be taken into consideration in future studies evaluating LPA as a reliable biomarker for CUD.


Assuntos
Cocaína , Transtornos Relacionados ao Uso de Substâncias , Masculino , Feminino , Ratos , Animais , Leucócitos Mononucleares/metabolismo , Estudos Transversais , Lisofosfolipídeos/metabolismo , Biomarcadores
7.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298523

RESUMO

Cortisol is a potent human steroid hormone that plays key roles in the central nervous system, influencing processes such as brain neuronal synaptic plasticity and regulating the expression of emotional and behavioral responses. The relevance of cortisol stands out in the disease, as its dysregulation is associated with debilitating conditions such as Alzheimer's Disease, chronic stress, anxiety and depression. Among other brain regions, cortisol importantly influences the function of the hippocampus, a structure central for memory and emotional information processing. The mechanisms fine-tuning the different synaptic responses of the hippocampus to steroid hormone signaling remain, however, poorly understood. Using ex vivo electrophysiology and wild type (WT) and miR-132/miR-212 microRNAs knockout (miRNA-132/212-/-) mice, we examined the effects of corticosterone (the rodent's equivalent to cortisol in humans) on the synaptic properties of the dorsal and ventral hippocampus. In WT mice, corticosterone predominantly inhibited metaplasticity in the dorsal WT hippocampi, whereas it significantly dysregulated both synaptic transmission and metaplasticity at dorsal and ventral regions of miR-132/212-/- hippocampi. Western blotting further revealed significantly augmented levels of endogenous CREB and a significant CREB reduction in response to corticosterone only in miR-132/212-/- hippocampi. Sirt1 levels were also endogenously enhanced in the miR-132/212-/- hippocampi but unaltered by corticosterone, whereas the levels of phospo-MSK1 were only reduced by corticosterone in WT, not in miR-132/212-/- hippocampi. In behavioral studies using the elevated plus maze, miRNA-132/212-/- mice further showed reduced anxiety-like behavior. These observations propose miRNA-132/212 as potential region-selective regulators of the effects of steroid hormones on hippocampal functions, thus likely fine-tuning hippocampus-dependent memory and emotional processing.


Assuntos
Corticosterona , MicroRNAs , Camundongos , Humanos , Animais , Corticosterona/farmacologia , Corticosterona/metabolismo , Hidrocortisona/metabolismo , Hipocampo/metabolismo , MicroRNAs/metabolismo , Plasticidade Neuronal
8.
Antioxidants (Basel) ; 12(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36978964

RESUMO

Cocoa, the main derivative of the seeds of Theobroma cacao L., has been recognized to have several effects on human health including antioxidant and neuro- and cardio-protective effects, among others. These effects have been attributed mainly to its bioactive compounds. In this context, the aim of this work is to evaluate the nutritional composition, bioactive compounds (i.e., phenolic compounds, procyanidins and methylxanthines) and the antioxidant activity of seven different cocoas (alkalized and non-alkalized) from different origins (Peru, Venezuela, Ivory Coast, Dominican Republic, and West Africa). It represents the first stage of a larger project aiming to find high polyphenol cocoa-based nutritional strategies and related biomarkers that may potentiate brain plasticity and cognitive function. Cocoa powders were extracted by ultrasound-assisted technology, and the total phenolic content (TPC) was measured by Folin-Ciocalteu. Methylxanthines (caffeine and theobromine) and procyanidin contents were determined by HPLC-FLD-DAD, and the antioxidant activity was assessed through DPPH, ABTS and FRAP assays. Non-alkalized cocoas showed higher phenolic and procyanidin contents and higher antioxidant activity compared to the alkalized ones. A strongly significant (p < 0.05) positive correlation between the antioxidant activity and the TPC, especially with the total procyanidin content, but not with methylxanthines was found. In conclusion, the non-alkalized cocoas, especially the one from Peru, were the best candidates in terms of bioactive compounds. The cocoa from Peru had a TPC of 57.4 ± 14.4 mg of gallic acid equivalent/g d.w., 28,575.06 ± 62.37 µg of catechin equivalents/g d.w., and 39.15 ± 2.12 mg/g of methylxanthines. Further studies should be undertaken to evaluate its effect on brain plasticity and cognitive function.

9.
Front Neurosci ; 17: 1147269, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36908779

RESUMO

Neurogenesis is a complex process by which neural progenitor cells (NPCs)/neural stem cells (NSCs) proliferate and differentiate into new neurons and other brain cells. In adulthood, the hippocampus is one of the areas with more neurogenesis activity, which is involved in the modulation of both emotional and cognitive hippocampal functions. This complex process is affected by many intrinsic and extrinsic factors, including nutrition. In this regard, preclinical studies performed in rats and mice demonstrate that high fats and/or sugars diets have a negative effect on adult hippocampal neurogenesis (AHN). In contrast, diets enriched with bioactive compounds, such as polyunsaturated fatty acids and polyphenols, as well as intermittent fasting or caloric restriction, can induce AHN. Interestingly, there is also growing evidence demonstrating that offspring AHN can be affected by maternal nutrition in the perinatal period. Therefore, nutritional interventions from early stages and throughout life are a promising perspective to alleviate neurodegenerative diseases by stimulating neurogenesis. The underlying mechanisms by which nutrients and dietary factors affect AHN are still being studied. Interestingly, recent evidence suggests that additional peripheral mediators may be involved. In this sense, the microbiota-gut-brain axis mediates bidirectional communication between the gut and the brain and could act as a link between nutritional factors and AHN. The aim of this mini-review is to summarize, the most recent findings related to the influence of nutrition and diet in the modulation of AHN. The importance of maternal nutrition in the AHN of the offspring and the role of the microbiota-gut-brain axis in the nutrition-neurogenesis relationship have also been included.

10.
Addict Biol ; 28(1): e13244, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36577726

RESUMO

Cocaine is a widely used psychostimulant drug whose repeated exposure induces persistent cognitive/emotional dysregulation, which could be a predictor of relapse in users. However, there is scarce evidence on effective treatments to alleviate these symptoms. Environmental enrichment (EE) has been shown to be associated with improved synaptic function and cellular plasticity changes related to adult hippocampal neurogenesis (AHN), resulting in cognitive enhancement. Therefore, EE could mitigate the negative impact of chronic administration of cocaine in mice and reduce the emotional and cognitive symptoms present during cocaine abstinence. In this study, mice were chronically administered with cocaine for 14 days, and control mice received saline. After the last cocaine or saline dose, mice were submitted to control or EE housing conditions, and they stayed undisturbed for 28 days. Subsequently, mice were evaluated with a battery of behavioural tests for exploratory activity, emotional behaviour, and cognitive performance. EE attenuated hyperlocomotion, induced anxiolytic-like behaviour and alleviated cognitive impairment in spatial memory in the cocaine-abstinent mice. The EE protocol notably upregulated AHN in both control and cocaine-treated mice, though cocaine slightly reduced the number of immature neurons. Altogether, these results demonstrate that EE could enhance hippocampal neuroplasticity ameliorating the behavioural and cognitive consequences of repeated administration of cocaine. Therefore, environmental stimulation may be a useful strategy in the treatment cocaine addiction.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Camundongos , Animais , Cocaína/farmacologia , Hipocampo , Cognição , Neurogênese
11.
J Comp Neurol ; 531(4): 548-560, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36515664

RESUMO

Intrinsic exploratory biases are an innate motivation for exploring certain types of stimuli or environments over others, and they may be associated with cognitive, emotional, and even personality-like traits. However, their neurobiological basis has been scarcely investigated. Considering the involvement of the hippocampus in novelty recognition and in spatial and pattern separation tasks, this work researched the role of adult hippocampal neurogenesis (AHN) in intrinsic exploratory bias for a perceptually complex object in mice. Spontaneous object preference tasks revealed that both male and female C57BL/6J mice showed a consistent unconditioned preference for exploring "complex"-irregular-objects over simpler ones. Furthermore, increasing objects' complexity resulted in an augmented time of object exploration. In a different experiment, male mice received either vehicle or the DNA alkylating agent temozolomide (TMZ) for 4 weeks, a pharmacological treatment that reduced AHN as evidenced by immunohistochemistry. After assessment in a behavioral test battery, the TMZ-treated mice did not show any alterations in general exploratory and anxiety-like responses. However, when tested in the spontaneous object preference task, the TMZ-treated mice did not display enhanced exploration of the complex object, as evidenced both by a reduced exploration time-specifically for the complex object-and a lack of preference for the complex object over the simple one. This study supports a novel role of AHN in intrinsic exploratory bias for perceptual complexity. Moreover, the spontaneous complex object preference task as a rodent model of "curiosity" is discussed.


Assuntos
Comportamento Exploratório , Motivação , Camundongos , Masculino , Feminino , Animais , Temozolomida/farmacologia , Camundongos Endogâmicos C57BL , Comportamento Exploratório/fisiologia , Hipocampo/fisiologia , Neurogênese
12.
Biomedicines ; 9(9)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34572393

RESUMO

Lysophosphatidic acid (LPA) is an endogenous lysophospholipid and a bioactive lipid that is synthesized by the enzyme autotaxin (ATX). The ATX-LPA axis has been associated with cognitive dysfunction and inflammatory diseases, mainly in a range of nonalcoholic liver diseases. Recently, preclinical and clinical evidence has suggested a role of LPA signaling in alcohol use disorder (AUD) and AUD-related cognitive function. However, the ATX-LPA axis has not been sufficiently investigated in alcoholic liver diseases. An exploratory study was conducted in 136 participants, 66 abstinent patients with AUD seeking treatment for alcohol (alcohol group), and 70 healthy control subjects (control group). The alcohol group was divided according to the presence of comorbid liver diseases (i.e., fatty liver/steatosis, alcoholic steatohepatitis, or cirrhosis). All participants were clinically evaluated, and plasma concentrations of total LPA and ATX were measured using enzyme-linked immunosorbent assays. Data were primarily analyzed using analysis of covariance (ANCOVA) while controlling for age, body mass index, and sex. Logistic regression models were created to assess the association of the ATX-LPA axis and AUD or liver disease. LPA and ATX were log10-transformed to fit the assumptions of parametric testing.The main results were as follows: total LPA and ATX concentrations were dysregulated in the alcohol group, and patients with AUD had significantly lower LPA (F(1,131) = 10.677, p = 0.001) and higher ATX (F(1,131) = 8.327, p = 0.005) concentrations than control subjects; patients with AUD and liver disease had significantly higher ATX concentrations (post hoc test, p < 0.05) than patients with AUD but not liver disease; significant correlations between AUD-related variables and concentrations of LPA and ATX were only found in the non-liver disease subgroup (the duration of alcohol abstinence with LPA and ATX (r = +0.33, p < 0.05); and the severity of AUD with ATX (rho = -0.33, p < 0.05)); and a logistic regression model with LPA, ATX, and AUD-related variables showed an excellent discriminative power (area under the curve (AUC) = 0.915, p < 0.001) for distinguishing patients with AUD and comorbid liver disease. In conclusion, our data show that the ATX-LPA axis is dysregulated in AUD and suggest this lipid signaling, in combination with relevant AUD-related variables, as a reliable biomarker of alcoholic liver diseases.

13.
Physiol Behav ; 240: 113542, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34332975

RESUMO

Repeated cocaine exposure induces lasting neurobehavioral adaptations such as cognitive decline in animal models. However, persistent changes in spontaneous -unconditioned- motor and exploratory responses are scarcely reported. In this study, mice were administered with cocaine (20 mg/kg/day) or vehicle for 12 consecutive days. After 24 days of drug abstinence, a behavioral assessment was carried out in drug-free conditions and in unfamiliar environments (i.e. no cocaine-associated cues were presented). The cocaine-withdrawn mice showed cognitive deficits in spontaneous alternation behavior and place recognition memory. Importantly, they also displayed hyperlocomotion, increased rearing activity and altered exploratory patterns in different tasks. In the forced swimming test, they were more active (struggled/climbed more) when trying to escape from the water albeit showing normal immobility behavior. In conclusion, in addition to cognitive deficits, chronic cocaine in rodents may induce long-lasting alterations in exploratory activity and psychomotor activation that are triggered even in absence of drug-related stimuli.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Disfunção Cognitiva , Animais , Ansiedade , Comportamento Animal , Cocaína/toxicidade , Disfunção Cognitiva/induzido quimicamente , Aprendizagem em Labirinto , Camundongos , Natação
14.
Brain Struct Funct ; 226(5): 1479-1495, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33792787

RESUMO

Defects in GABAergic function can cause anxiety- and depression-like behaviors among other neuropsychiatric disorders. Therapeutic strategies using the transplantation of GABAergic interneuron progenitors derived from the medial ganglionic eminence (MGE) into the adult hippocampus reversed the symptomatology in multiple rodent models of interneuron-related pathologies. In turn, the lysophosphatidic acid receptor LPA1 has been reported to be essential for hippocampal function. Converging evidence suggests that deficits in LPA1 receptor signaling represent a core feature underlying comparable hippocampal dysfunction and behaviors manifested in common neuropsychiatric conditions. Here, we first analyzed the GABAergic interneurons in the hippocampus of wild-type and maLPA1-null mice, lacking the LPA1 receptor. Our data revealed a reduction in the number of neurons expressing GABA, calcium-binding proteins, and neuropeptides such as somatostatin and neuropeptide Y in the hippocampus of maLPA1-null mice. Then, we used interneuron precursor transplants to test links between hippocampal GABAergic interneuron deficit, cell-based therapy, and LPA1 receptor-dependent psychiatric disease-like phenotypes. For this purpose, we transplanted MGE-derived interneuron precursors into the adult hippocampus of maLPA1-null mice, to test their effects on GABAergic deficit and behavioral symptoms associated with the absence of the LPA1 receptor. Transplant studies in maLPA1-null mice showed that grafted cells were able to restore the hippocampal host environment, decrease the anxiety-like behaviors and neutralize passive coping, with no abnormal effects on motor activity. Furthermore, grafted MGE-derived cells maintained their normal differentiation program. These findings reinforce the use of cell-based strategies for brain disorders and suggest that the LPA1 receptor represents a potential target for interneuron-related neuropsychiatric disorders.


Assuntos
Ansiedade , Interneurônios , Adaptação Psicológica , Animais , Neurônios GABAérgicos/metabolismo , Hipocampo/metabolismo , Interneurônios/metabolismo , Camundongos , Camundongos Knockout , Receptores de Ácidos Lisofosfatídicos/genética
15.
Addict Biol ; 26(2): e12886, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32090424

RESUMO

Cocaine addiction is a chronic disorder in which the person loses control over drug use. The past memories of the stimuli associated with the drug are a relevant clinical problem, since they trigger compulsive drug-seeking and drug-taking habits. Furthermore, these persistent drug-related memories seemingly coexist with cognitive decline that predicts worse therapeutic output. Here, we use a new animal model of cocaine-altered cognition that allowed to observe these events in the same individual and study their relationship. Mice were chronically administered cocaine in a conditioned place preference (CPP) apparatus for 14 days, and control mice received saline. After 28 days of cocaine withdrawal, animals were tested for retrieval of remote drug-associated memory as well as for cognitive performance in a battery of tests, including novel object and place recognition and spatial memory. The cocaine-withdrawn mice showed persistent CPP memory while impaired in the cognitive tasks, displaying deficits in reference memory acquisition and working memory. However, the CPP expression was not associated with the defective cognitive performance, indicating that they were concomitant but independent occurrences. After completion of the experiment, adult hippocampal neurogenesis (AHN) was studied as a relevant neurobiological correlate due to its potential role in both learning and drug addiction. Results suggested a preserved basal AHN in the cocaine-withdrawn mice but an aberrant learning-induced regulation of these neurons. This paradigm may be useful to investigate maladaptive cognition in drug addiction as well as related therapies.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/patologia , Cocaína/farmacologia , Disfunção Cognitiva/patologia , Memória de Longo Prazo/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Animais , Comportamento Aditivo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
Artigo em Inglês | MEDLINE | ID: mdl-33152386

RESUMO

Several studies have demonstrated that lysophosphatidic acid (LPA) acts through its LPA receptors in multiple biological and behavioral processes, including adult hippocampal neurogenesis, hippocampal-dependent memory, and emotional regulation. However, analyses of the effects have typically involved acute treatments, and there is no information available regarding the effect of the chronic pharmacological modulation of the LPA/LPA receptors-signaling pathway. Thus, we analyzed the effect of the chronic (21 days) and continuous intracerebroventricular (ICV) infusion of C18:1 LPA and the LPA1-3 receptor antagonist Ki16425 in behavior and adult hippocampal neurogenesis. Twenty-one days after continuous ICV infusions, mouse behaviors in the open field test, Y-maze test and forced swimming test were assessed. In addition, the hippocampus was examined for c-Fos expression and α-CaMKII and phospho-α-CaMKII levels. The current study demonstrates that chronic C18:1 LPA produced antidepressant effects, improved spatial working memory, and enhanced adult hippocampal neurogenesis. In contrast, chronic LPA1-3 receptor antagonism disrupted exploratory activity and spatial working memory, induced anxiety and depression-like behaviors and produced an impairment of hippocampal neurogenesis. While these effects were accompanied by an increase in neuronal activation in the DG of C18:1 LPA-treated mice, Ki16425-treated mice showed reduced neuronal activation in CA3 and CA1 hippocampal subfields. Treatment with the antagonist also induced an imbalance in the expression of basal/activated α-CaMKII protein forms. These outcomes indicate that the chronic central modulation of the LPA receptors-signaling pathway in the brain regulates cognition and emotion, likely comprising hippocampal-dependent mechanisms. The use of pharmacological modulation of this pathway in the brain may potentially be targeted for the treatment of several neuropsychiatric conditions.


Assuntos
Cognição/fisiologia , Emoções/fisiologia , Hipocampo/metabolismo , Lisofosfolipídeos/administração & dosagem , Neurogênese/fisiologia , Receptores de Ácidos Lisofosfatídicos/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cognição/efeitos dos fármacos , Emoções/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Infusões Intraventriculares , Isoxazóis/administração & dosagem , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Neurogênese/efeitos dos fármacos , Propionatos/administração & dosagem , Receptores de Ácidos Lisofosfatídicos/agonistas , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
17.
J Psychopharmacol ; 34(11): 1250-1260, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32536325

RESUMO

BACKGROUND: Recent studies have demonstrated that alcohol consumption can modulate the immune system by directly activating natural immunity and triggering inflammatory processes in the central nervous system and in peripheral organs, such as the liver and pancreas. Patients with alcohol use disorders have an elevated frequency of comorbid mental disorders and gut diseases (i.e. fatty liver and pancreatitis) that complicate diagnosis, treatment and prognosis. AIMS: The present study aims to explore possible associations in circulating plasma cytokine concentrations in abstinent patients diagnosed with alcohol use disorders. METHODS: To this end, 85 abstinent subjects with alcohol use disorders from an outpatient setting and 55 healthy subjects were evaluated for both substance and mental disorders. The plasma levels of cytokines interleukin 1 beta, interleukin 4, interleukin 6, interleukin 17A, interferon gamma and tumour necrosis alpha were determined and their association with (a) history of alcohol consumption, (b) psychiatric comorbidity and (c) liver/pancreas comorbidities was explored. RESULTS: We found that plasma concentrations of interleukin 1 beta, interleukin 6 and tumour necrosis alpha were increased, whereas plasma concentrations of interleukin 4, interleukin 17A and interferon gamma were decreased in abstinent alcohol use disorder patients as compared with control subjects. Moreover, we found that changes in interleukin 6 and interleukin 17A plasma concentrations in alcohol use disorder patients were associated with the presence of liver and pancreatic diseases. CONCLUSION: The present results suggest alcohol use disorder is associated with alterations of plasma cytokines, being interleukin 6 and interleukin 17A potential biomarkers of the presence of comorbidities of digestive organs. The clinical relevance of these findings is discussed in the context of alcohol-induced inflammatory processes.


Assuntos
Abstinência de Álcool , Alcoolismo/sangue , Alcoolismo/imunologia , Interleucina-17/sangue , Interleucina-6/sangue , Adulto , Biomarcadores/sangue , Estudos Transversais , Feminino , Humanos , Interferon gama/sangue , Interleucina-1/sangue , Interleucina-4/sangue , Masculino , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/sangue
18.
Neuropharmacology ; 162: 107840, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31704270

RESUMO

Cocaine induces neuroinflammatory response and interleukin-1 beta (IL1ß) is suggested a final effector for many cocaine-induced inflammatory signals. Recently, the chemokine fractalkine (CX3CL1) has been reported to regulate hippocampus-dependent neuroinflammation and synaptic plasticity via CX3C-receptor 1 (CX3CR1), but little is known about the impact of cocaine. This study is mainly focused on the characterization of CX3CL1, IL1ß and relevant inflammatory signal transduction pathways in the hippocampus in acute and repeated cocaine-treated male mice. Complementarily, the rewarding properties of cocaine were also assessed in Cx3cr1-knockout (KO) mice using a conditioned place preference (CPP). We observed significant increases in CX3CL1 and IL1ß concentrations after cocaine, although repeated cocaine produced an enhancement of CX3CL1 concentrations. CX3CL1 and IL1ß concentrations were positively correlated in acute (r = +0.61) and repeated (r = +0.82) cocaine-treated mice. Inflammatory signal transduction pathways were assessed. Whereas acute cocaine-treated mice showed transient increases in p-ERK1/2/ERK1/2 and p-p65/p65 NFκB ratios after cocaine injection, repeated cocaine-treated mice showed transient increases in p-ERK1/2/ERK1/2, p-p38/p38 MAPK, p-NFκB p65/NF-κB p65 and p-CREB/CREB ratios. Baseline p-p38/p38 MAPK and p-CREB/CREB ratios were downregulated in repeated cocaine-treated mice. Regarding the cocaine-induced CPP, Cx3cr1-KO mice showed a notably impaired extinction but no differences during acquisition and reinstatement. These results indicate that cocaine induces alterations in CX3CL1 concentrations, which are associated with IL1ß concentrations, and activates convergent inflammatory pathways in the hippocampus. Furthermore, the CX3CL1/CX3CR1 signaling could mediate the processes involved in the extinction of cocaine-induced CPP.


Assuntos
Quimiocina CX3CL1/efeitos dos fármacos , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Hipocampo/efeitos dos fármacos , Inflamação/metabolismo , Interleucina-1beta/efeitos dos fármacos , Animais , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Condicionamento Clássico/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Extinção Psicológica/efeitos dos fármacos , Hipocampo/metabolismo , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais , Fator de Transcrição RelA/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Curr Opin Pharmacol ; 50: 109-116, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31708413

RESUMO

Basic research in rodents has shown that adult hippocampal neurogenesis (AHN) plays a key role in neuropsychiatric disorders that compromise hippocampal functioning. The discovery that dependence-inducing drugs regulate AHN has led to escalating interest in the potential involvement of AHN in drug addiction over the last decade, with cocaine being one of the most frequently investigated drugs. This review argues that, unlike other drugs of abuse, preclinical studies do not, overall, support that cocaine induces a marked or persistent impairment in AHN. Nevertheless, experimental reduction of AHN consistently exacerbates vulnerability to cocaine. Interestingly, preliminary evidence suggests that, on the contrary, increasing AHN might help both to prevent and treat addiction.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Hipocampo/fisiologia , Neurogênese , Adulto , Animais , Comportamento , Transtornos Relacionados ao Uso de Cocaína/prevenção & controle , Transtornos Relacionados ao Uso de Cocaína/terapia , Humanos
20.
Sci Rep ; 9(1): 16842, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727978

RESUMO

The lack of effective treatments and a high rate of relapse in cocaine addiction constitute a major health problem. The present study was conducted to examine the expression of tryptophan-derived metabolites in the context of cocaine addiction and psychiatric comorbidity, which is common in addicted subjects. Abstinent patients with cocaine use disorder (CUD) and control subjects were recruited for a cross-sectional study. Participants were assessed with a semi-structured diagnostic interview (PRISM) based on DSM-IV-TR for substance and mental disorders. Plasma concentrations of tryptophan metabolites and their association with relevant CUD-related variables and psychiatric comorbidity were explored. We observed decreased plasma kynurenic acid concentrations in the cocaine group, however no associations between CUD-related variables and tryptophan-derived metabolites were found. In contrast, 5-HT concentrations were increased in CUD-patients and the diagnosis of different psychiatric disorders in the cocaine group was related to higher plasma 5-HT concentrations compared with non-comorbid patients. Therefore, while changes in plasma kynurenic acid concentrations appear to be directly associated with lifetime CUD, changes in 5-HT concentrations are associated with psychiatric comorbidity. These results emphasize the need to find potential biomarkers for a better stratification of cocaine-addicted patients in order to develop therapeutic approaches to prevent cocaine relapse.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/psicologia , Transtornos Mentais/metabolismo , Serotonina/sangue , Triptofano/química , Adulto , Estudos de Casos e Controles , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Comorbidade , Estudos Transversais , Feminino , Humanos , Ácido Cinurênico/sangue , Masculino , Transtornos Mentais/sangue , Triptofano/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...